New Approaches to Decontamination of Rooms After Patients Are Discharged

John M. Boyce, MD
Hospital Epidemiologist
Hospital of Saint Raphael
and
Clinical Professor of Medicine
Yale University School of Medicine
New Haven, CT

Disclosures: Consultant to Soap & Detergent Association, Clorox Corporation, 3M Corporation, BIOQUELL PLC. Honoraria from Clorox, Advanced Sterilzation Products Research support from 3M, Lumalier, Clorox, Crothall
Newer Approaches to Cleaning/Disinfection of Surfaces with Liquid Disinfectants

- Newer liquid disinfectants are available for cleaning/disinfection of environmental surfaces
 - Accelerated hydrogen peroxide liquid disinfectant
 - Peracetic acid/hydrogen peroxide
 - Activated hydrogen peroxide liquid/spray/wipes
 - Rapidly kills pathogenic bacteria and viruses
 - Yields low aerobic colony counts after cleaning
 - Electrolysed water disinfectant
- Impact on transmission of pathogens is unknown

Havill NL et al. APIC 2012
Meakin NS et al. J Hosp Infect 2012;80:122
No-Touch Room Decontamination Systems

- Hydrogen peroxide vapor technology
- Aerosolized hydrogen peroxide
- Gaseous ozone
- Saturated steam devices
- Alcohol-based fogging
- Peracetic acid fogging

- Mobile ultraviolet (UV) light devices
- Pulsed-xenon UV light system
- High-Intensity Narrow-Spectrum light
- Hydroxyl radical disinfection unit
Vapor-Based Hydrogen Peroxide Systems

• 2 major vapor-based hydrogen peroxide technologies are commercially available
 – Micro-condensation process (Bioquell)
 – “Dry gas” process (Steris)

• Despite differences in method of application, both technologies have been validated as effective

McAnoy AM: Vaporous Decontamination Methods, Australian Government DSTO 2006
Otter JA et al. ICHE 2009;30:574
Pottage T et al. J Hosp Infect 2010;24:55
Otter JA and Yezli S J Hosp Infect 2011;77:83
Vapor-Based Hydrogen Peroxide Systems

- Micro-condensation HPV system is highly effective in eradicating important pathogens
 - Methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-resistant enterococci (VRE), *Clostridium difficile*, *Klebsiella*, *Acinetobacter*, *Serratia*
 - *Mycobacterium tuberculosis*, fungi, viruses

- Laboratory and in-hospital studies document 6 log$_{10}$ reductions of a number of these pathogens

Hall L et al. Med Mycol 2008;46:189
Boyce JM et al. Infect Control Hosp Epidemiol 2008;29:723
Pottage T et al. J Hosp Infect 2010;24:55
Vapor-Based Hydrogen Peroxide Systems

• “Dry gas” vaporized hydrogen peroxide (VHP) system has been shown to be effective against
 – *Mycobacterium tuberculosis*, *Mycoplasma*, *Acinetobacter*, *Clostridium difficile*
 – *Bacillus anthracis*, viruses, prions

Heckert RA Appl Environ Microbiol 1997;63:3916
Ray A et al. Infect Control Hosp Epidemiol 2010;31:1236
Impact of Vapor-Based Hydrogen Peroxide Decontamination on Nosocomial Infections

• To date, most experience in healthcare facilities is with micro-condensation HPV system

• Decontamination of patient rooms using the micro-condensation HPV system has contributed to controlling several outbreaks
 – Cooper T et al. J Hosp Infect 2011;78:238

• “Dry gas” VHP system contributed to control of an outbreak in a long term care hospital
Micro-condensation HPV Process

• Several studies have shown that the micro-condensation HPV process has
 – Contributed to control of outbreaks caused by MRSA, *Serratia* and *C. difficile*, *Acinetobacter*
 – Associated with a significant reduction in incidence of nosocomial *C. difficile* infections
 – Been used to decontaminate a room previously occupied by a patient with Lassa fever
 – Feasible in hospital with high census levels

Boyce JM et al. Infect Control Hosp Epidemiol 2008;29:723
Otter JA et al. Infect Control Hosp Epidemiol 2009;30:574
Otter JA et al. J Hosp Infect 2010;75:325
Impact of Hydrogen Peroxide Vapor (HPV) Room Decontamination on Environmental Contamination and Nosocomial Transmission by *Clostridium difficile*

- A 10-month prospective trial in community-teaching hospital
- Before/After intervention study design
- After patients were discharged, environmental surfaces were cultured for *C. difficile*, MRSA and VRE
- Rooms were decontaminated using hydrogen peroxide vapor (HPV) microcondensation technology
- Same surfaces in decontaminated rooms were cultured for *C. difficile*, MRSA and VRE
 - Swab cultures processed at hospital
 - Sponge cultures processed at CDC

Boyce JM et al. Infect Control Hosp Epidemiol 2008;29:723
Microbiologic Efficacy of HPV Decontamination

<table>
<thead>
<tr>
<th></th>
<th>Before HPV</th>
<th>After HPV</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Swab Cultures</td>
<td>165</td>
<td>155</td>
</tr>
<tr>
<td># Cultures (+) for Cdiff</td>
<td>4 (2.4%)</td>
<td>0</td>
</tr>
<tr>
<td>MRSA</td>
<td>9 (5%)</td>
<td>0</td>
</tr>
<tr>
<td>VRE</td>
<td>23 (14%)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th># of Sponges Cultured</th>
<th># of Sponges (+) for Cdiff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43</td>
<td>11 (25.6%)</td>
</tr>
</tbody>
</table>

Hospital of Saint Raphael
Impact of HPV Decontamination on Incidence of New Nosocomial CDAD Cases

Reduction in rate: 39%

Reduction in rate: 53%

Analysis only for months when epidemic strain was present

Boyce JM et al. ICHE 2008;29:723
Impact of Hydrogen Peroxide Vapor (HPV) Room Decontamination on Risk of Acquiring VRE or MRSA

- Prospective study on 3 intervention wards
- Rooms cultured for VRE and MRSA
- Rooms were decontaminated with HPV whenever possible
- Incidence of VRE and MRSA acquisition determined among patients who were subsequently admitted to the rooms

Passaretti CL et al. 48th ICAAC, Oct 2008, Abstr K-4214b
Impact of Hydrogen Peroxide Vapor (HPV) Room Decontamination on Risk of Acquiring VRE or MRSA

• Rooms were classified as:
 – **Missed**: preceding room occupant known to have VRE or MRSA, but room NOT decontaminated with HPV

 – **Not Done**: preceding room occupant NOT known to be colonized or infected with VRE or MRSA, and room NOT decontaminated with HPV

 – **HPV**: preceding room occupant known to be colonized or infected with VRE or MRSA; room was decontaminated with HPV
Impact of Hydrogen Peroxide Vapor Room Decontamination on Risk of Acquiring VRE or MRSA

<table>
<thead>
<tr>
<th></th>
<th>Acquisition rate (# of acquisitions/1000 patient-days)</th>
<th>Adjusted Incidence Rate Ratio</th>
<th>P - Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missed Not Done HPV</td>
<td>10.2, 6.9, 2.0</td>
<td>1.0, 0.59, 0.22</td>
<td>0.08, 0.02</td>
</tr>
<tr>
<td>MRSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missed Note Done HPV</td>
<td>3.4, 2.4, 0.6</td>
<td>1.0, 0.62, 0.18</td>
<td>0.26, 0.11</td>
</tr>
</tbody>
</table>

Passaretti CL et al. 48th ICAAC, Oct 2008, Abstr K-4214b
Terminal Room Disinfection Using Dilute Bleach Followed by Hydrogen Peroxide Vapor (HPV)

• Before-After study in 900-bed hospital

• Intervention included terminal disinfection of rooms vacated by patients with MDR *Acinetobacter*
 – 10% bleach disinfection, repeated 4 times (132 rooms)
 – 10% bleach disinfection x 1 before & after HPV treatment using microcondensation process (37 rooms)
 – 10% bleach x 1 followed by HPV (134 rooms)

• Cultures for *Acinetobacter* & MRSA were obtained after terminal disinfection/decontamination

Manian F et al. ICHE 2011;32:667
Terminal Room Disinfection Using Dilute Bleach Followed by Hydrogen Peroxide Vapor

- After 4 rounds of bleach cleaning
 - 27% of rooms had > 1 culture-positive site
 - 16% of rooms yielded MDR *Acinetobacter*; 14% grew MRSA

- After 1 round of bleach cleaning before/after HPV
 - Significant reduction in number of room sites (+) for *Acinetobacter* and for MRSA

- After 1 round of bleach cleaning followed by HPV
 - All culture-positive rooms were negative for *Acinetobacter* and MRSA after cleaning and HPV decontamination

Manian F et al. ICHE 2011;32:667
Aerosolized Hydrogen Peroxide (aHP) Dry Mist System

- Formerly Sterinis, now Advanced Sterilization Products
- Aerosol produced contains 8-12 micron particles
 - 5% hydrogen peroxide, < 50 ppm silver ions, < 50 ppm phosphoric acid, < 1ppm Arabica gum and 95% bi-osmotic water
- Cultures obtained before/after cycles have demonstrated significant reductions in bacterial (including spore) counts in laboratory settings and patient care areas
 - Did not completely eradicate *C. difficile* spores in 2 studies

Shapey S et al. J Hosp Infect 2008;70:136
Bartels MD et al. J Hosp Infect 2008;70:35
Aerosol Hydrogen Peroxide (aHP) “Dry Mist” Disinfection System

- *In vitro* study with MRSA and *Acinetobacter*
- Organisms inoculated onto stainless steel disks
 - With and without 5% sterile serum
 - Placed on surfaces, partly closed drawers, covered Petri dish
 - On upper side and underside of horizontal surfaces
- Log reductions achieved
 - ~ 4.5 \log_{10} if no barrier present
 - 1.5 \log_{10} to 3.5 \log_{10} if in partly closed drawer

- Conclusions:
 - Effective in disinfecting open areas of test room
 - Poor activity in semi-closed or closed areas

Hydrogen Peroxide Vapor (HPV) vs Aerosolized Hydrogen Peroxide (aHP)

- Comparison of 1 HPV generator versus 2 aHP machines

- $6 \log_{10} Geobacillus\ stearothermophilus$ biologic indicator (BI) spore strips in multiple locations

- All biological indicators (BIs) were inactivated by HPV, compared to 10% to 79% by aHP
 - Cycle times: HPV = 3 hrs. aHP = 3.5 hrs

- Conclusion: 1 HPV generator was more effective than 2 aHP machines in inactivating BIs

Holmdahl T et al. Infect Control Hosp Epidemiol 2011;32:831
Hydrogen Peroxide Vapor vs Aerosolized Hydrogen Peroxide

- 2nd head-to-head comparison of HPV and aHP
- 4- and 6-log *G. stearothermophilus* BIs and test discs with MRSA, *Acinetobacter* or *C. difficile*
- Doors were sealed during HPV cycles, but not during aHP cycles (recommended by company)
- Detection of leakage of HP from rooms was performed with hand held detector

Fu TY et al. J Hosp Infect 2012;80:199
Hydrogen Peroxide Vapor vs Aerosolized Hydrogen Peroxide

- HPV generally yielded 6-log reduction, while aHP generally achieved < 4-log reduction on BIs and discs
- Culture results suggested that distribution of aHP was uneven, but this was not true for HPV
- HP leakage occurred from room when door was not sealed during aHP cycles, and levels of HP in room after aHP cycles exceeded short-term exposure limit x 2 hrs
- Conclusion: HPV was safer, faster and more effective than aHP for biological inactivation

Fu TY et al. J Hosp Infect 2012;80:199
Other Aerosol-Based Hydrogen Peroxide Systems

- Aerosol “dry fog” system with heating and ionizing turbine
 - 6% hydrogen peroxide
 - 30 ppm colloidal silver
 - Average particle size – 5 microns

- Surfaces inoculated with VRE yielded 1.0 – 1.7 \(\log_{10} \) reduction after treatment

- In a trial conducted in 8 hospital rooms, 33.3% of surfaces yielded no growth after treatment

Relative Efficacy of No-Touch Hydrogen Peroxide Decontamination Systems

<table>
<thead>
<tr>
<th>Reduction in Bacterial Levels</th>
<th>Micro-condensation HPV Bioquell</th>
<th>Dry Gas Vaporized HP Steris</th>
<th>Dry Mist Aerosol HP Sterinis (ASP)</th>
<th>Dry Fog Aerosol HP Oxypharm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Reduction Vegetative Bacteria</td>
<td>10^6</td>
<td>10^6</td>
<td>$10^3 - 10^{4.5}$</td>
<td>$10^1 - 10^{1.7}$</td>
</tr>
<tr>
<td>Log Reduction Bacterial Spore strips</td>
<td>10^6</td>
<td>10^6</td>
<td>$\sim 10^1 - < 10^4$</td>
<td>??</td>
</tr>
<tr>
<td>Log Reduction C. difficile Spores</td>
<td>10^6</td>
<td>10^6</td>
<td>10^4</td>
<td>??</td>
</tr>
</tbody>
</table>

Ultraviolet Light Systems

- Automated mobile UV light units that emit UV-C (254 nm range) can be placed in patient rooms after patient discharge and terminal cleaning had been performed.
- Units can be set to kill vegetative bacteria or to kill spores.
- Significantly reduce bacterial counts in patient rooms.
- Easy to use and require relatively short cycle times.
Automated Ultraviolet Light Systems

- Cultures obtained from surfaces inoculated with *C. difficile*, MRSA, VRE or *S. warneri* were obtained before/after UVC light decontamination

- UV-C light decontamination produced
 - 3-4 log$_{10}$ reductions with MRSA & VRE
 - 2-3 log$_{10}$ reductions of *C. difficile* on various surfaces

- Median of 2 log$_{10}$ reduction of *C. difficile* spores inoculated on stainless steel disk carriers

Nerandzic M et al. BMC Infect Dis 2010;10:197
Rutala WA et al. ICHE 2010;31:1025
Boyce JM et al. ICHE 2011;32:737
Comparison of HPV vs Mobile UV Light System

• Prospective study in 500-bed hospital

• 15 rooms were each decontaminated once with HPV and UV-C light processes, at intervals > 2 months apart

• 5 high-touch surfaces in each room were sampled before/after decontamination & aerobic colony counts (ACCs) were determined

• Carrier disks with 10^6 C. difficile spores and BIs with 10^4 and 10^6 G. stearothermophilus spores were placed in 5 sites in each room before decontamination

Havill NL & Boyce JM ICHE 2012;33:507
Comparison of HPV vs Mobile UV Light System

- Of sites which had (+) ACCs before decontamination
 - 93% yielded no growth after HPV treatment
 - 52% yielded no growth after UV-C light treatment

- Mean *C. difficile* log reductions
 - > 6 logs for HPV vs ~ 2 logs for UV-C

- Proportion of 10^4 BIs yielded no growth after Rx
 - 100% after HPV, compared to 22% after UV-C

- Proportion of 10^6 BIs yielded no growth after Rx
 - 99% after HPV, compared to 0% after UV-C

Havill NL & Boyce JM ICHE 2012;33:507
Comparison of HPV vs Mobile UV Light System

• Sites out of direct line of sight were significantly more likely to show growth after UV-C than after HPV

• Mean cycle times
 - 153 min for HPV vs 73 min for UV-C

• Conclusions: Both HPV and UV-C reduced bacterial contamination in patient rooms
• HPV was significantly more effective in rendering surfaces culture-negative; more effective vs spores
• UV-C was faster and easier to use

Havill NL & Boyce JM ICHE 2012;33:507
Pulsed-Xenon UV Light System

• Pulsed-xenon UV (PX-UV) device was studied in 12 rooms of VRE pts

• High-touch sites were cultured
 • 14 samples taken before manual cleaning & after PX-UV treatment
 • 14 samples taken after routine terminal room cleaning
 • 7 samples were taken before cleaning, after standard terminal cleaning, and after PX-UV treatment

• Swab cultures were placed in D-E neutralizing broth and shipped to lab

Stibich M et al. ICHE 2011;32:286
Pulsed-Xenon UV Light System

- 12-min multi-position treatment cycle was used

- Before cleaning
 - 78% of samples yielded growth; 23% were VRE-positive

- After standard terminal cleaning
 - 64% of samples yielded growth; 8% were VRE-positive

- After PX-UV treatment
 - 36% of samples yielded growth; none were VRE-positive
 - Median ACCs were reduced from 33/cm² to 1.2/cm²

- Conclusion: PX-UV system showed significant reduction in microbial load and eliminated VRE on sampled surfaces

Stibich M et al. ICHE 2011;32:286
Other Novel No-Touch Room Decontamination Systems

• Gaseous ozone

• Saturated steam vapor system

• High-Intensity Narrow-spectrum light
 – Bache SE et al. Burns 2012;38:69

• Hydroxyl radical disinfection units
Summary

• New liquid products for disinfection of environmental surfaces include:
 – New hypochlorite-based products effective against *C. difficile* spores
 – Liquid accelerated/activated hydrogen peroxide products

• New area decontamination processes:
 • Require more time than cleaning by housekeeper
 • Are more expensive than cleaning by housekeepers
 • Reduce or eliminate pathogens on surfaces more reliably than standard cleaning by housekeepers
 • Vapor-based hydrogen peroxide systems are more effective at eradicating pathogens on surfaces
 • More data are needed on relative effectiveness of various systems on reducing transmission of pathogens
Traditional Room Disinfection After Patient Discharge

- Hospital room disinfection is most commonly performed by using liquid disinfectants
 - Spraying and wiping surfaces
 - Wiping surfaces with a mop, cloth or wipe containing disinfectant

- Traditional liquid disinfectants used for surface disinfection
 - Quaternary ammonium compounds
 - Phenolics
 - Bleach (l’eau de javel)
 - Alcohols
 - Chlorine dioxide
 - Aldehydes
Newer Approaches to Cleaning/Disinfection of Surfaces with Liquid Disinfectants

- Newer liquid surface disinfectants are effective at reducing surface contamination

- Few data are available on the impact of newer surface disinfectants on transmission of healthcare-associated pathogens

Meakin NS et al. J Hosp Infect 2012;80:122
Alfa MJ et al. BMC Infect Dis 2010;10:268
Newer Approaches to Cleaning/Disinfection of Surfaces with Liquid Disinfectants

• Sodium hypochlorite (dilute bleach) is recommended for disinfection of surfaces potentially contaminated with *C. difficile* or Norovirus
 – Rutala WA et al. CDC Disinfection & Sterilization Guideline, 2008

• New hydrogen peroxide-based liquid disinfectant/cleaners are active against *C. difficile* spores
 – Offer alternative to sodium hypochlorite (bleach) for disinfecting surfaces contaminated with *C. difficile*
Micro-condensation Hydrogen Peroxide Vapor (HPV) System

• In healthcare facilities, most experience with vapor-based hydrogen peroxide decontamination has been with the micro-condensation system by (Bioquell)

• The Bioquell micro-condensation HPV process has been used for room or area decontamination
 – in healthcare facilities in 20 countries around the world
 – In life sciences facilities in 45 countries
Micro-condensation HPV Process

- HPV generator and catalytic converter are placed in room or area to be decontaminated
- Air vents and door are sealed with tape
- Generator is turned on to deliver vapor to room
- When adequate hydrogen peroxide has been delivered to room, generator is turned off
- Catalytic converter is turned on, changes hydrogen peroxide vapor to oxygen and water vapor
- Tape and equipment removed from room
- Average total time for cycle: 2 to 2.5 hrs